Random Matrix Approaches in Number Theory
نویسندگان
چکیده
The connection between random matrix theory and the Riemann zeta function was established in 1973 when Montgomery, who had conjectured the 2-point correlations of the Riemann zeros, and Dyson, who was interested in similar statistics of the eigenvalues of ensembles of unitary matrices, realized that the formulae they had discovered independently were in fact identical in a natural asymptotic limit. Further attempts at the verification of this coincidence of Riemann zero and eigenvalue statistics were then produced from various fronts: overwhelming numerical evidence was afforded by the mammoth computations of Andrew Odlyzko (1989); the heuristic work of Bogomolny and Keating (1995) pointed towards the agreement of not just the 2-point correlation function, but all the n-point statistics as well; and Rudnick and Sarnak (1996) proved that the Riemann zeros and the eigenvalues of this random matrix ensemble have the same n-point statistics in a restricted range.
منابع مشابه
A Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملAPPLICATION OF THE RANDOM MATRIX THEORY ON THE CROSS-CORRELATION OF STOCK PRICES
The analysis of cross-correlations is extensively applied for understanding of interconnections in stock markets. Variety of methods are used in order to search stock cross-correlations including the Random Matrix Theory (RMT), the Principal Component Analysis (PCA) and the Hierachical Structures. In this work, we analyze cross-crrelations between price fluctuations of 20 company stocks...
متن کاملTown trip forecasting based on data mining techniques
In this paper, a data mining approach is proposed for duration prediction of the town trips (travel time) in New York City. In this regard, at first, two novel approaches, including a mathematical and a statistical approach, are proposed for grouping categorical variables with a huge number of levels. The proposed approaches work based on the cost matrix generated by repetitive post-hoc tests f...
متن کاملThe number of graphs and a random graph with a given degree sequence
We consider the set of all graphs on n labeled vertices with prescribed degrees D = (d1, . . . , dn). For a wide class of tame degree sequences D we prove a computationally efficient asymptotic formula approximating the number of graphs within a relative error which approaches 0 as n grows. As a corollary, we prove that the structure of a random graph with a given tame degree sequence D is well...
متن کاملRandom Triangle Theory with Geometry and Applications
What is the probability that a random triangle is acute? We explore this old question from a modern viewpoint, taking into account linear algebra, shape theory, numerical analysis, random matrix theory, the Hopf fibration, and much much more. One of the best distributions of random triangles takes all six vertex coordinates as independent standard Gaussians. Six can be reduced to four by transl...
متن کاملRandom Matrix Theory, Numerical Computation and Applications
This paper serves to prove the thesis that a computational trick can open entirely new approaches to theory. We illustrate by describing such random matrix techniques as the stochastic operator approach, the method of ghosts and shadows, and the method of “Riccatti Diffusion/Sturm Sequences,” giving new insights into the deeper mathematics underneath random matrix theory.
متن کامل